Energy input, habitat heterogeneity and host specificity drive avian haemosporidian diversity at continental scales

Abstract

The correct identification of variables affecting parasite diversity and assemblage composition at different spatial scales is crucial for understanding how pathogen distribution responds to anthropogenic disturbance and climate change. Here, we used a database of avian haemosporidian parasites to test how the taxonomic and phylogenetic diversity and phylogenetic structure of the genera Plasmodium, Haemoproteus and Leucocytozoon from three zoogeographic regions are related to surrogate variables of Earth’s energy input, habitat heterogeneity (climatic diversity, landscape heterogeneity, host richness and human disturbance) and ecological interactions (resource use), which was measured by a novel assemblage-level metric related to parasite niche overlap (degree of generalism). We found that different components of energy input explained variation in richness for each genus. We found that human disturbance influences the phylogenetic structure of Haemoproteus while the degree of generalism explained richness and phylogenetic structure of Plasmodium and Leucocytozoon genera. Furthermore, landscape attributes related to human disturbance (human footprint) can filter Haemoproteus assemblages by their phylogenetic relatedness. Finally, assembly processes related to resource use within parasite assemblages modify species richness and phylogenetic structure of Plasmodium and Leucocytozoon assemblages. Overall, our study highlighted the genus-specific patterns with the different components of Earth’s energy budget, human disturbances and degree of generalism.

Publication
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, (291), 2018, https://doi.org/10.1098/rspb.2023.2705